Friday, 28 October 2016

STANDARD 5 UNIT 4 വ്യത്തങ്ങൾ



വ്യത്തം

ഒരു ദ്വിമാനതലത്തിൽ കേന്ദ്രബിന്ദുവിൽ നിന്ന് നിശ്ചിത ദൂരത്തിൽ അതേ തലത്തിൽ സ്ഥിതിചെയ്യുന്ന എല്ലാ ബിന്ദുക്കളുടേയും ഗണത്തെ പ്രതിനിധീകരിക്കുന്ന ജ്യാമിതീയ രൂപമാണ്‌ വൃത്തം. ഒരു തലത്തിൽ സ്ഥിതി ചെയ്യുന്ന വശങ്ങളില്ലാത്ത ഏക ജ്യാമിതീയ രൂപമാണ്‌ വൃത്തം.വൃത്തം എന്ന പദം പലപ്പോഴും വക്രതയിലുള്ള ബിന്ദുക്കളെ സൂചിപ്പിയ്ക്കുന്നതിലുപരിയായി വൃത്തപരിധിയ്ക്കുള്ളിലെ തലത്തെയാണ് വിവരിയ്ക്കുന്നത്.ഏറ്റവും കുറഞ്ഞ ചുറ്റളവിൽ ഏറ്റവും കൂടിയ ഉപരിതല വിസ്തീർണ്ണം ഈ രൂപത്തിന്റെ മറ്റൊരു പ്രത്യേകതയാണ്. ഈ ഒരു പ്രത്യേകതയാണ്‌ കിണറിന്റെ ആകൃതി വൃത്തത്തിൽ ആകുന്നത്.

ദ്വിതല യൂലീഡിയൻ രൂപമാണ് വൃത്തം.വൃത്തം കോണികങ്ങൾ എന്ന വിഭാഗത്തിൽ ഉൾപ്പെടുന്നു.ഒരു വൃത്തസ്തൂപിക അതിന്റെ അക്ഷത്തിന് ലംബമായ തലവുമായി യോജിയ്ക്കുമ്പോഴാണ് വൃത്തം ഉണ്ടാകുന്നത്.ഇപ്രകാരം r ആരവും (h,k) കേന്ദ്രവുമായ വൃത്തത്തിന്റെ (x – h)2 + (y - k)2 = r2 എന്ന സമവാക്യം ലഭിയ്ക്കുന്നു.ദീർഘവൃത്തത്തിന്റെ ഒരു പ്രത്യേകരൂപമാണ് വൃത്തം.


വൃത്തകേന്ദ്രത്തിൽ നിന്നും വൃത്തപരിധിയിലുള്ള ഏതൊരു ബിന്ദുവിലേയ്ക്കുമുള്ള അകലം തുല്യമായിരിയ്ക്കും.


വ്യാസം
ജ്യാമിതിയിൽ, വൃത്തപരിധിയിലെ രണ്ട് ബിന്ദുക്കളെ തമ്മിൽ യോജിപ്പിച്ചു കൊണ്ട് വൃത്തത്തിന്റെ കേന്ദ്രത്തിൽ കൂടി കടന്നു പോകുന്ന രേഖാഖണ്ഡത്തെ ആ വൃത്തത്തിന്റെ വ്യാസം എന്നു പറയുന്നു. വ്യാസത്തെ, ഒരു വൃത്തത്തിന്റെ ഏറ്റവും നീളം കൂടിയ ഞാൺ എന്നും നിർവചിക്കാവുന്നതാണ്.
മേൽപറഞ്ഞ രണ്ട് നിർവചനങ്ങളും വൃത്തത്തിനു പുറമേ, ഗോളത്തിനും ബാധകമാണ്
ഇംഗ്ലീഷിലെ ഡയമീറ്റർ (diameter) എന്ന പദം, ഗ്രീക്ക് ഭാഷയിലെ ഡയാ (δια, dia, എതിർ)), മെട്രോൺ (μέτρον, metron, അളവ്) എന്നീ പദങ്ങൾ ചേർന്ന ഡയമെട്രോസ് എന്ന പദത്തിൽ നിന്നും വന്നതാണ്.
ഗണിതത്തിൽ വ്യാസം എന്ന പദം വ്യാസരേഖാഖണ്ഡത്തിന്റെ നീളത്തെ സൂചിപ്പിക്കുന്നു. വൃത്തത്തിന്റെയും, ഗോളത്തിന്റെയും വ്യാസം ആരത്തിന്റെ ഇരട്ടിയാണ്.
{\displaystyle d=2r.}
ഉത്തലം(convex) ആയ ദ്വിമാനരൂപങ്ങളിൽ, എതിർ വശങ്ങളിലെ സമാന്തരമായ സ്‍പർശരേഖകൾ തമ്മിലുള്ള കൂടിയ ദൂരത്തെ, വ്യാസം ആയും, കുറഞ്ഞ ദൂരത്തെ ’വീതി’ ആയും കണക്കാക്കുന്നു. റൊട്ടേറ്റിംഗ് കാലിപർ സങ്കേതം ഉപയോഗിച് ഇവ രണ്ടൂം അളക്കാവുന്നതാണ്. റ്യൂല്യാക്സ് ത്രികോണം പോലെയുള്ള പ്രത്യേക തരം ജ്യാമിതീയ രൂപങ്ങളിൽ വീതിയും വ്യാസവും തുല്യമായിരിക്കും

No comments:

Post a Comment